The N-acetylmuramic acid 6-phosphate etherase gene promotes growth and cell differentiation of cyanobacteria under light-limiting conditions.
نویسندگان
چکیده
Inactivation of sll0861 in Synechocystis sp. strain PCC 6803 or the homologous gene alr2432 in Anabaena sp. strain PCC 7120 had no effect on the growth of these organisms at a light intensity of 30 micromol photons m(-2) s(-1) but reduced their growth at a light intensity of 5 or 10 micromol photons m(-2) s(-1). In Anabaena, inactivation of the gene also significantly reduced the rate of heterocyst differentiation under low-light conditions. The predicted products of sll0861 and alr2432 and homologs of these genes showed similarity to N-acetylmuramic acid 6-phosphate etherase (MurQ), an enzyme involved in peptidoglycan recycling, in Escherichia coli. E. coli murQ and the cyanobacterial homologs could functionally substitute for each other. We hypothesize that murQ in cyanobacteria promotes low-light adaptation through reutilization of peptidoglycan degradation products.
منابع مشابه
MurQ Etherase is required by Escherichia coli in order to metabolize anhydro-N-acetylmuramic acid obtained either from the environment or from its own cell wall.
MurQ is an N-acetylmuramic acid-phosphate (MurNAc-P) etherase that converts MurNAc-P to N-acetylglucosamine-phosphate and is essential for growth on MurNAc as the sole source of carbon (T. Jaegar, M. Arsic, and C. Mayer, J. Biol. Chem. 280:30100-30106, 2005). Here we show that MurQ is the only MurNAc-P etherase in Escherichia coli and that MurQ and AnmK kinase are required for utilization of an...
متن کاملRecycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate.
Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P...
متن کاملThe Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel
Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملPeptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase
Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 192 8 شماره
صفحات -
تاریخ انتشار 2010